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redistribute them to a local Maxwellian distribution, these
applications may have significant regions that are non-In this paper we describe a numerical technique, matrix-free New-

ton–Krylov, for solving a single species, stationary, one spatial di- Maxwellian and thus require kinetic modelling.
mension, one velocity dimension, Vlasov–Fokker–Planck equation. In this paper we present a fully implicit solution algo-
This method is both deterministic and fully implicit and may not rithm for the Vlasov–Fokker–Planck equation and apply
have been a viable option before recent developments in numerical

it to kinetic modeling of the edge plasma in a tokamakmethods. It is demonstrated that efficient steady-state solutions to
fusion reactor. The algorithm contains no operator splittingthe nonlinear integro-differential equation, can be achieved, ob-

taining quadratic convergence, but not incurring the large memory or directional splitting, and all integral coupling is evalu-
requirements of an integral operator. We present a model problem ated at the current iteration level. Everywhere that the
which simulates ion transport in the edge plasma of a tokamak distribution function occurs, including in the moment
fusion reactor and use this model problem to demonstrate the per-

quantities of temperature, pressure, fluid velocity, or num-formance of the new solution method. We demonstrate that the
ber densities, the distribution function is evaluated at newsolution algorithm is compatible with a higher-order, monotone,
time values. This couples all distribution functions at aconvective differencing scheme. Q 1997 Academic Press

given spatial location (i.e., across all of velocity space).
This fully implicit coupling allows large Courant number

1. INTRODUCTION simulations and thus efficient steady-state solutions. We
do this by employing a preconditioned matrix-free New-

The need to use kinetic modelling in collisional plasmas ton–Krylov method [8]. The preconditioner is an incom-
for resolution of the distribution functions arises from the plete LU factorization (ILU) [9] of a modified Jacobian.
desire for an accurate description of reaction rates, trans- For the preconditioner, the Jacobian is modified by evalu-
port quantities, and electric field. To accomplish this we ating the integral coupling at the previous iteration level,
need to resolve the structure of the distribution functions in other words, we are using only the differential operators
of ions and electrons in velocity space. The plasma fluid at new time in the preconditioner.
equations [1] are based on the assumption that the distribu- Our model problem arises from transport in the tokamak
tion functions are Maxwellian over the length scales of edge plasma. In a diverted tokamak, the core plasma and
interest, and when this assumption applies, more efficient edge plasma are separated by the magnetic separatrix. As
computations are possible. In this paper we are concerned the plasma diffuses radially across the tokamak separatrix,
with developing an advanced solution algorithm for appli- it moves from a region of closed magnetic field lines, the
cations where the distribution functions can be non-Max- core, to a region of open magnetic field lines, the edge.
wellian. A wide variety of plasma applications require These open magnetic field lines guide the plasma to the
some level of kinetic simulation to address the effect of divertor plates. For some edge plasma conditions the parti-
non-Maxwellian distribution functions. Examples of these cle mean free path due to coulomb collisions, which scale
are edge plasma modeling for magnetically confined fusion as n/T 3/2, may be on the same order as the problem geome-
[2–4], inertial confinement fusion plasmas [5], plasma pro- try. This similarity in scale between mean free path and
cessing applications [6], and lasers [7]. In each of these fluid transport length motivates a kinetic treatment
applications there exists the need to resolve length scales [2, 10–14]. Our model problem is not used to study kinetic

effects in the edge plasma. It is used only to demonstrateon the order of the particle mean free path. Since the
particles must travel a few mean free paths before collisions the performance of the solution algorithm.
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The organization of the rest of the paper is as follows. The final term on the RHS is the volumetric source term
that represents the diffusion of the ‘‘hot’’ ions from theSection 2 presents the mathematical model and Section 3

defines the discrete equations. Section 4 motivates the use core into the edge plasma. Only the ion kinetic equation
will be solved. The electron density is obtained from quasi-of the matrix-free Newton–Krylov method and describes

the algorithm with emphasis on Newton’s method, the neutrality and the electron temperature is obtained by
assuming thermal equilibrium with the ions. The electronKrylov method, and the use of the matrix-free approxima-

tion. Section 5 describes our model problem and provides density and temperature will only contribute to the ion
computation through the electric field.calculational results. Section 6 summarizes the work com-

pleted and decsribes future work to be done. Since our motivation is to demonstrate and study the
numerical methods, we have chosen a simplified Fokker–
Planck collision operator [15–18] which has the form

2. MATHEMATICAL MODEL
F
t Ucol

5 ncolHFkT
m G 2F

v2 1
[(v 2 V )F]

v J, (3)Our model equation contains both the Vlasov operator
and a simplified Fokker–Planck collision operator. In gen-
eral form, the time dependent Vlasov–Fokker–Planck where ncol is the collision frequency. Note that this collision
equation has seven independent variables, three velocity operator has the following three properties. First, it con-
dimensions (3V), three spatial dimensions (3D), and one serves the number of particles. Second, it represents both
temporal dimension. To demonstrate the numerical the friction between particles and the diffusion of particles
method we apply it to a simplified two-dimensional, 1D– in velocity space. Finally, it has no effect on a Maxwel-
1V, model equation describing ion transport in a tokamak lian distribution.
divertor. This equation is derived from a more complete In a high recycling divertor, a significant fraction of the
three-dimensional, 1D–2V, Vlasov–Fokker–Planck equa- plasma which strikes the divertor plate is recycled as neu-
tion for transport along a magnetic field line [2, 13], in tral atoms which diffuse back into the plasma and are
which the two velocity coordinates are perpendicular and ionized through electron impact ionization. In our model
parallel to the magnetic field lines. problem, the neutrals which are generated at the plate are

For our model problem, we eliminate the perpendicular assumed to have an exponential profile falling off from
velocity dimension, v' , by assuming it to be Maxwellian the plate as
[15]. More formally,

nn(x) 5 nn(L) exp S(x 2 L)
ln

D. (4)
f (v, v') 5 S m

2fkTD exp
2mv2

'

2kT
F(v). (1)

Here nn is the neutral number density, ln is the neutral
Here f is the three-dimensional distribution function, F is mean free path defined by ionization, and L is the length
the two-dimensional distribution function, v is the particle of the region. The exact form of the ionization source
velocity along the magnetic field line, v' is the particle term is
velocity perpendicular to the magnetic field line, m is the
particle mass, k is the Boltzmann constant, and T is the F

t Uneut
5

nied(v 2 vn)nn

Dv
(5)fluid temperature. With this assumption, the distribution

function has the form F(x, v) where x is the distance along
the magnetic field line. Therefore, the two dimensional where nie is the electron impact ionization frequency and
steady-state ion transport equation is Dv is the mesh spacing in the v direction. This assumes that

the neutral distribution function is a beam with velocity vn .
The correct distribution for the neutrals is unknown so a

v
F
x

1
qEx

m
F
v

5
F
t Ucol

1
F
t Uneut

1
F
t Usrc

, (2) beam has been chosen for simplicity. Other neutral particle
distributions can be included in the future. The core source
term is based on work from Emmert [19] and has the formwhere q is the particle charge. The first term accounts

for the convective flux. The second term represents the
acceleration of the charged particles due to the electric F

t Usrc
5 S 1

DvD SRinjh(x)vm
2kTinj

D exp Fm(v 2 V )2

2kTinj
G, (6)

field. The first term on the right hand side (RHS) represents
the ion–ion collisions. The second term on the RHS ac-
counts for the neutrals that are created at the plate, trans- where Rinj is the particle injection rate and h(x) is the

injection shape factor such thatport back into the plasma, and are ionized by electrons.
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shown in Fig. 1. For the model problem, the computationalELinj

0
h(x) dx 5 1. (7)

domain extends from 1.5 3 105 m/s to 21.5 3 105 m/s in
the velocity direction (v) and from zero to 6 m in the spatial
direction (x). The upper left boundary is a symmetry plane

This source was designed to produce Maxwellian distribu- in x, which is described by
tions in the absence of an electric field. It may not be the
most appropriate source model for collisional plasmas and

F(0, v) 5 F(0, 2v) : v [ [0, vmax]. (14)we will investigate other possibilities in future work. The
particle source comes mainly from neutral recycling at the

The lower left and upper right boundaries are simple out-plate and the core source is used primarily for energy, i.e.,
flow boundaries being approximated with a Neumann con-to define a temperature. The distribution function mo-
dition orments are defined by

F(0, v)
x

5
F(L, v)

x
5 0 : v [ [0, vmax]. (15)

n 5 Ey

2y
F dv (8)

nV 5 Ey

2y
vF dv (9) The lower right boundary is the no flow wall boundary,

nkT 5 m Ey

2y
(v 2 V )2 F dv, (10) F(L, v) 5 0 : v [ [0, 2vmax]. (16)

The velocity boundaries are set to conserve mass [21] and
where n is the particle density, V is the fluid velocity, and they are
T is the fluid temperature. For this single species work, we
have used a simplified form of the electric field calculation. F(x, vmax)

v
5

F(x, 2vmax)
v (17)

If we assume the electrons to be governed by the same
form of kinetic equation (ignoring unlike coulomb colli-

5 F(x, vmax) 5 F(x, 2 vmax) 5 0 : x [ [0, L].
sions), then the electron momentum equation is

3. DISCRETE EQUATIONSme
neV 2

e

x
5 2

Pe

x
2 eneEx . (11)

The discrete version of the Vlasov–Fokker–Plank equa-
tion is

Ignoring electron inertia and assuming that Pi 5 Pe 5 P
and ni 5 ne 5 n, we then have the form of the electric field

vj
F̃ n11

i11/2, j 2 F̃ n11
i21/2, j

Dxi
1

q
m

E n11
i

F̃ n11
i, j11/2 2 F̃ n11

i, j21/2

Dvj

Ex 5 2
1
en

P
x

, (12)
5

ncol

Dvj 53k
m

T n11
i

F n11
i, j11 2 F n11

i, j

Dvj11/2

where e is the charge of an electron. Again we have chosen
1 (vj11/2 2 V n11

i ) F̃ n11
i, j11/24 (18)a simplified model to demonstrate the numerics. As we

progress to a coupled ion–electron problem we will use a
more correct electric field which combines the mv moment
of each kinetic equation and quasi-neutrality [20]. Finally, 2 Fk

m
Tn11

i
F n11

i, j 2 F n11
i, j21

Dvj21/2we close out the equation set with an equation of state

1 (vj21/2 2 V n11
i ) F̃ n11

i, j21/2GJ,
P 5 nkT. (13)

where the tilde (F̃) indicates a face value that will be
described later. The electric field, equation of state, andThe two-dimension x–v space computational domain is
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FIG. 1. Model problem geometry.

fluid moment integral quantities are evaluated using the The lower left boundary is
midpoint rule,

F n11
1, j 5 F n11

2, j : j 5 1,
ny
2

.
E n11

i 5 2
1

enn11
i

P n11
i11 2 P n11

i21

2Dxi
(19)

The upper right boundary isP n11
i 5 nn11

i kT n11
i (20)

T n11
i 5

m
nn11

i k O
ny

j51
(vj 2 V n11

i )2 F n11
i, j Dvj (21)

F n11
nx, j 5 F n11

nx21, j : j 5
ny
2

1 1, ny.

V n11
i 5

1
nn11

i
Ony

j51
vj F n11

i, j Dvj (22)
The upper left symmetry boundary is

nn11
i 5 Ony

j51
F n11

i, j Dvj . (23)
F n11

1,ny112j 5 F n11
1, j : j 5

ny
2

1 1, ny.

Here the superscript, n, is the nonlinear iteration level, the
The no flow lower left wall boundary issubscript i is the spatial grid index, and the subscript j

is the velocity grid index. The velocity space boundary
conditions are

F n11
nx, j 5 0 : j 5 1,

ny
2

,

F n11
i,ny 2 F n11

i,ny 2 1

Dvny21/2
5 F̃ n11

i,ny21/2 5 0 : i 5 1, nx
where nx is the number of discrete points in the x direction
and ny is the number of grid points in the v direction.

and We will now define the difference form of the cell face
quantities. The cell face distribution function values
(F̃i11/2, j , F̃i21/2, j , F̃i, j11/2 , F̃i, j21/2) are not direct unknowns inF n11

i,1 2 F n11
i,0

Dv1/2
5 F̃ n11

i,1/2 5 0 : i 5 1, nx.
the discrete system so they need to be approximated. For
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the base code, the first order operators in the Vlasov equa- For the advanced differencing results presented later,
the first order operators in the Vlasov equation are differ-tion are upwind differenced. That is,
enced using flux-limited [23] QUICK (Quadratic Upstream
Interpolation for Convective Kinematics) [24]. The
QUICK method computes the cell face value from the two
cell values straddling the cell face location and a third cellvj

F̃ n11
i11/2, j 2 F̃ n11

i21/2, j

Dxi
5 5vj

F n11
i11, j 2 F n11

i, j

Dxi
if vj . 0

vj
F n11

i, j 2 F n11
i21, j

Dxi
if vj # 0,

(24)
value in the ‘‘upwind’’ direction. A quadratic equation is
fitted to these three cell centered values and the cell face
value is computed from the evaluation of the quadratic.
For an accelerating convective quantity in velocity spaceand
on a uniform mesh this results in

F̃ n11
i, j11/2 5 Ak (3F n11

i, j11 1 6F n11
i, j 2 F n11

i, j21). (29)q
m

E n11
i

F̃ n11
i, j11/2 2 F̃ n11

i, j21/2

Dxi
(25)

A flux-limiting strategy [23] is employed to ensure that the
cell face value is monotone (i.e., the cell face value lies
between the two cell center values, F n11

i, j11 $ F̃ n11
i, j11/2 $5 5

q
m

E n11
i

F n11
i, j11 2 F n11

i, j

Dvj
if

q
m

E n11
i . 0

q
m

E n11
i

F n11
i, j 2 F n11

i, j21

Dvj
if

q
m

E n11
i # 0.

F n11
i, j or F n11

i, j11 # F̃ n11
i, j11/2 # F n11

i, j ). The details of the flux-
limiting and the nonuniform version of QUICK are de-
scribed in Ref. [18] and will be presented in a future paper.

The collision operator for the advanced differencing ex-The diffusion operators in the Fokker–Planck term are
amples is computed using the Chang–Cooper method [25].central differenced as shown in Eq. (18). The cell face
The Chang–Cooper method is designed to cancel out thedistribution function values (F̃ n11

i, j11/2 , F̃ n11
i, j21/2) in the collision

numerical error for a Maxwellian distribution. The Chang–operator are based on interpolated donor cell differencing
Cooper differencing is[22]. Interpolated donor cell differencing is a linear combi-

nation of upwind differencing and central differencing. The
F̃ n11

i, j11/2 5 (1 2 d) F n11
i, j11 1 d F n11

i, j , (30)upwind component is based on the direction of the fric-
tional force. If the particle velocity is greater than the fluid

wherevelocity the frictional force is downward or decelerating.
If the particle velocity is less than the fluid velocity the
frictional force is upward or accelerating. In equation form

d 5
1
w

2
1

exp(w) 2 1
(31)

this is

(vj21/2 2 V n11
i ) Fupwind

(26)
and

w 5
m(vj11/2 2 V n11

i ) Dvj

kT n11
i

. (32)5 5(vj21/2 2 V n11
i ) F n11

i, j11 if (vj21/2 2 V n11
i ) . 0

(vj21/2 2 V n11
i ) F n11

i, j if (vj21/2 2 V n11
i ) # 0.

The Chang–Cooper differencing, although it is still a first
The central difference contribution for a uniform mesh is

order method, is an inexpensive technique which helps to
minimize discretization error by optimally choosing d.

(vj21/2 2 V n11
i ) Fcentral 5 (vj21/2 2 V n11

i ) FF n11
i, j11 1 F n11

i, j

2 G,
4. SOLUTION ALGORITHM

(27)
The solution algorithm presented in this paper is fully

implicit. Here, all variables are evaluated at new time andso the whole term is
solved for simultaneously as is shown in Section 3. Because
the equations are nonlinear, Newton’s method is used to(vj21/2 2 V n11

i ) F̃ n11
i, j11/2 (28) linearize the problem. The resulting linear systems can be

5 (vj21/2 2 V n11
i ) [aFupwind 1 (1 2 a) Fcentral]. very large and dense (for a 100 velocity by 50 spatial grid

there are 7.549 3 105 nonzero elements out of 2.5 3 107

total entries or a 3% fill rate). The density of the matrixHere a 5 0.05 is a weighting term that is chosen to be small,
but large enough to keep the differencing nonoscillatory. results from the integral coupling due to the moment quan-
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tities that appear as coefficients of the derivative terms. The and the new solution approximation is obtained from
storage of this large dense matrix makes most interesting
applications prohibitively expensive in terms of memory. xn11 5 xn 1 ddxn. (37)
The matrix storage problem could be dealt with by simply
evaluating the integral quantities at previous iteration val- The constant, d [ [0, 1], in Eq. (37) is used to damp
ues during the iterations. However, as the integral terms the Newton updates. The damping strategy is designed to
become important, this lagging of the integral quantities prevent the calculation of nonphysical variable values (i.e.,
can significantly affect convergence, as will be demon- negative distribution functions) and to scale large variable
strated in Section 5. What is desired is a method that does updates when the solution is far from the true solution.
not require the storage of the large dense matrix, but still This iteration is continued until the norm of dx and/or the
has all of its effects during all the iteration steps. The norm of G(x) are below some suitable tolerance level.
ideal method would approximate the action of the Jacobian Construction of the Jacobian matrix can be one of the
matrix without having to build or store the Jacobian matrix. most difficult tasks in implementing Newton’s method. The
Matrix-free Newton–Krylov is one such method. method which is employed in this study is to approximate

We re-emphasize that the proposed solution algorithm the Jacobian with finite differences. This method was cho-
does not lag the integral terms in the nonlinear (outer) sen because it results in very modular code that is easily
iteration. The integral terms are lagged in the precondi- modified and maintained.
tioner and thus only the linear (inner) iteration is effected. An inexact Newton’s method [28] is used for increased

efficiency. This technique adjusts the convergence toler-
ance for the linear solve of Eq. (35) with the nonlinear iter-4.1. Newton’s Method
ation,

The nonlinearity of the problem comes from the electric
field and the (F/t)ucol term in Eq. (2). To deal with this iJn dxn 1 G(xn)i2

iG(xn)i2
, c, (38)nonlinearity Newton’s method is used. The main advantage

of Newton’s method is its quadratic convergence. Its draw-
backs, however, are that the initial guess must be within

and thus increases efficiency by loosening the convergencethe Newton radius of convergence and it may require many
tolerance when the nonlinear iteration is ‘‘far’’ from thelinear solves. One can get an initial guess within the radius
solution where high accuracy does not benefit the globalof convergence by using a restart from a similar problem.
convergence. The selection of the best value for c is empiri-Other methods for increasing the Newton radius of conver-
cal, but we have found values in the range of 1023–1022 togence are pseudo-transients, damping strategies, and mesh
work well for our problem.sequencing [26, 27]. We will discuss these in more detail

To increase the radius of convergence of Newton’sin the following paragraphs.
method a pseudo-transient is employed. In this methodNewton’s method is a powerful technique for solving
the Jacobian is modified as follows:systems of nonlinear equations of the form

S I
Dt

1 JnD dxn 5 2G(xn). (39)G(x) 5 [g1(x), g2(x), ..., gn(x)]T 5 0 (33)

where the state vector, x, can be expressed as By increasing the diagonal of the Jacobian, the size of the
Newton update dxk is lowered and the iteration is damped.
Additionally, the increased diagonal will serve to decreasex 5 [x1 , x2 , ..., xn]T. (34)
the condition number of the matrix and thus improve the
performance of the Krylov method. However, this will

Application of Newton’s method requires the solution of most likely come at the cost of increased Newton iterations.
the linear system The time step, Dt, is allowed to increase as the steady-state

residual decreases. This is accomplished by the algorithm
Jn dxn 5 2G(xn) (35)

Dt n 5 Dt 0 iG(x0)iy

iG(xn21)iy
. (40)

where the elements of the Jacobian, J, are defined by

Here the superscript 0 refers to the initial Newton iteration.
Mesh sequencing is used to get an initial guess insideJn

i, j 5
gi

xn
j

(36)
of the Newton radius of convergence by interpolating a
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converged solution from a coarse grid where the computa- represents an average of all of the individual epsilons that
would have been used in evaluating a complete numericaltional costs are low to a fine grid. Here the coarse grid

distribution function values are linearly interpolated to Jacobian [33].
By using this approximation in the Krylov iteration, oneget the new fine grid distribution function values. More

advanced grid interpolation schemes will be investigated is not required to form the full Jacobian matrix on each
Newton step, but rather just that part which is requiredin the future. Using this technique places the largest num-

ber of Newton iterations on the coarse grids where the for a preconditioner. Thus, the large computational cost
of evaluating each element in the Jacobian via Eq. (36) iscost per iteration is lowest and the radius of convergence

is largest. replaced with one additional right-hand-side evaluation
per GMRES iteration. This results in a vast reduction in

4.2. Krylov Method storage requirements since the Jacobian matrix is never
stored.Krylov techniques are used as the iterative method for

With preconditioning, Eq. (41) has the formsolving Eq. (35). There are many Krylov, conjugate gradi-
ent-like, solvers [29, 30], but we have focused our attention
on the Generalized Minimal Residual (GMRES) method JPv P

G(x 1 «Pv) 2 G(x)
«

. (43)
[31]. This is because GMRES has been shown to be more
robust in matrix-free implementations [32, 33] than other
Krylov algorithms and our solution method requires a ma- The preconditioning matrix P is formed by evaluating inte-
trix-free implementation. Since the memory requirements gral terms at the state xn (i.e., lagged). Thus, while we
of the GMRES algorithm increases with iteration, we want employ the matrix-free Newton–Krylov iteration on the
to minimize the number of linear iterations per Newton equation
step. To lower the number of linear iterations we precondi-
tion the original matrix system. Preconditioning reduces

v
F n11

x
1

qE n11
x

m
F n11

v
5 ncolHFkT n11

m G 2F n11

v2

(44)
the spread in eigenvalues (the farthest distance between
two eigenvalues) and/or clusters the eigenvalues (reduces
the total number of unique eigenvalues) of the matrix,

1
[(v 2 V n11)F n11]

v J1
F
t Uneut

1
F
t Usrc

,both of which increase the performance of the Krylov
method. In this study we use Incomplete Lower–Upper
factorization [9], ILU(k), as our preconditioner.

the preconditioner is constructed from the Jacobian of the
same equation with T n, E n

x , and V n at the old iteration4.3. Matrix-Free Approximation
level. Since the integral quantities are evaluated at the last

To solve Eq. (35), the GMRES algorithm requires the iteration value, the preconditioner matrix has a five or nine
action of the Jacobian only in the form of matrix vector diagonal structure, which results from the five (upwind)
products, not the acutal Jacobian matrix itself. Because of or nine (QUICK) point stencil of the difference operators
the large size and density of the Jacobian matrix, caused (see Section 3). Therefore, when we use ILU(0) as the
by the integral coupling, one would like to find a way to preconditioner, the total preconditioner matrix storage is
approximate the Jacobian’s action. This can be done using 5 3 N or 9 3 N, where N is the total number of unknowns.
the so-called matrix-free or reduced storage approximation
[8, 34],

5. MODEL PROBLEM AND RESULTS

To demonstrate the numerical method we have chosenJv P
G(x 1 «v) 2 G(x)

«
. (41)

a 1D–1V model problem. The purpose of this model prob-
lem is not to study kinetic effects, but rather to study

Here v is a vector in the Krylov iteration and « is a small algorithm performance. In fact, the model problem is in a
perturbation. The perturbation is calculated as density, temperature regime where collisional effects dom-

inate. The problem is a one-dimensional representation of
a high recycling divertor along the magnetic field line.« 5

o[(1 3 1028) 3 F(x, v)]
Nivi2

, (42)
Ions and energy are injected into the source region,

according to Eq. (6) at a temperature of 75 eV, and flow
out of the problem at the divertor plate, x 5 6 m. Thewhere N is the total number of unknowns (i.e., N 5 nx 3

ny, where nx is the number of discrete volumes in the x injection temperature was used to keep the upstream tem-
perature at approximately 30 eV. The maximum particledirection and ny is the number of discrete volumes in the

v direction). It should be noted that the « used in Eq. (42) velocity is set at 1.5 3 105 m/s, which is approximately
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TABLE I

Input Values for Model Problem

nx 100 ny 200 ln 0.5 m

L 6.0 m vmax 1.5 3 105 m/s Tinj 75.0 eV
ncol 2.5 3 105 1/s m 2 AMU Rinj 3.367 3 1027m23s21

vn 3.5 3 104 m/s nn(L) 6.122 3 1019m23 Linj 4.56 m

3 3 vth , for the conditions at the symmetry plane. For this x 5 6.0. Figure 8 also demonstrates the non-Maxwellian
behavior caused by the ionization source at x 5 5.94.first problem, a constant collision frequency is used, and

vth 5 (2kT/m)0.5 P 5.0 3 104 m/s for T 5 30 eV. nn(L) Figure 9 shows the convergence, in terms of update size
dxn in Eq. (37), per Newton step for a four mesh sequencewas chosen to give a high recycling solution, and nie 5

vn/ln . Here the neutral model is set to give a source of cold of uniform grids. For this run, ILU (3) is the precondi-
tioner, and GMRES(120) is the Krylov solve. This resultsparticles that ionize in about one third of the computational

region. The rest of the input quantities are defined in Ta- in a memory usage of 85.12 megabytes for the largest
(200 3 400) grid. Here we can clearly see that mesh se-ble I.

In Fig. 2 we see the neutral particle profile which results quencing reduces the number of Newton iterations on the
finer meshes. The strong oscillations in the coarse gridfrom Eq. (4). These neutrals are ionized and feed into Eqs.

(2) through (5). Figure 3 shows the electric field computed convergence are a function of the pseudo-transient pro-
gression, the damping algorithm, and the time step control.by Eq. (12). Here we can see the increase in the electric

field in the pre-sheath region near the wall. Figure 10 shows the convergence for the 200 3 400 mesh
as a function of CPU time on an HP 735 workstation. ThisIn Figs. 4 through 7 we see the moment quantities de-

fined by Eqs. (8) through (10) and Eq. (13), respectively. In illustrates the importance of good initial guesses for the
fine grids where each Newton iteration takes significantlythese figures we can see the classic high recycling divertor

structure of a density bump and a declining temperature more time than the coarse grid iterations. Table II shows
the Newton iterations, CPU time, and the cumulative CPU[26, 27]. Figure 8 shows constant ‘‘x’’ slices of the distribu-

tion function. Here we can see acceleration of the flow as time for the entire mesh sequenced run. The cumulative
CPU time shows a running total of all of the meshes CPUwe move across the simulation towards the divertor, shown

by the shifting of the distribution function towards higher time combined. From Fig. 10 we can see that as the solution
velocity. We can also see the initial rise in number density,
the peak at x 5 4.5, and the drop as we approach the wall,

FIG. 2. Neutral number density. FIG. 3. Electric field.
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FIG. 4. Ion number density.

FIG. 6. Fluid pressure.

is approached, the CPU cost per Newton iteration goes
up. This is caused by the Krylov convergence tolerance Figure 12 shows results similar to those in Fig. 11 for a
from Eq. (38). mesh sequenced set of runs which uses nonuniform mesh

Figure 11 shows the effect of mesh refinement on the spacing in the x direction (i.e., smaller spacing near the
fluid pressure. It is clear that the solution is beginning to wall), flux-limited QUICK for the Vlasov operator, and
converge. These results indicate the need for higher-order Chang–Cooper differencing of the Collision operator. It
differencing of the first order operators, which are cur- should be noted that the advanced differencing could have
rently differenced with first-order upwind everywhere ex- included a nonuniform grid spacing in the v direction but
cept in the (F/t)ucol term where interpolated donor cell optimal refinement of the velocity dimension has not yet
differencing is used. Higher-order differencing as well as been incorporated. However, the nonuniform spacing in
a nonuniform grid will aid in limiting the required mesh the x direction resolves the steep gradient near the wall
size for accuracy.

FIG. 5. Fluid velocity. FIG. 7. Fluid temperature.
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TABLE II

Newton and CPU (HP 735) Performance for a
Four Grid Sequence

CPU time Cumulative CPU time
Mesh Newton iterations (s) (s)

25 3 50 33 24 24
50 3 100 15 66 90

100 3 200 12 305 395
200 3 400 10 1682 2077

using advanced differencing, Fig. 12, while clearly the
25 3 50 grid solution is unacceptable for the first order
differencing, Fig. 11. In fact, the 25 3 50 high-order
solution taking 260 s is comparable in accuracy to theFIG. 8. Distribution function slices.
100 3 200 first-order solution taking nearly 400 s.

As the collision frequency n is increased, the integral
coupling, due to the T and V in the collision operator,with a coarse mesh and clearly improves accuracy. Here
becomes more important. Figures 14 and 15 show the ad-one can see that with advanced differencing a mesh inde-
vantage of the matrix-free Newton–Krylov method whenpendent solution is more quickly obtained.
the integral coupling becomes more important. From theseFigure 13 shows the cost that has to be paid for the
figures one can see that both the CPU time and the totalhigher accuracy. This plot is taken from the 25 3 50 run.
number of iterations rapidly increase for the lagged matrixClearly, the total number of Newton iterations have in-
solution (i.e., T and V at the last iteration value). But thecreased compared to the 25 3 50 line in Fig. 9. The CPU
matrix-free approximation makes the computation timetime has also increased from 24 s for the 25 3 50 run
almost independent of the collision frequency.shown in Table II to 260 s. It should be noted however that

As mentioned previously, the unique capability of thisthe advanced differencing work has not been optimized
solution algorithm is that it can retain implicit coupling ofto the level that the upwind and interpolated donor cell
integral terms without the memory requirements of storingdifferencing solutions have. Also, one can see that an accu-
these terms in the Jacobian. Figures 16 and 17 show therate solution is obtained even for the 25 3 50 grid problem

FIG. 9. Mesh sequenced convergence vs Newton iteration. FIG. 10. 200 3 400 convergence vs CPU time (HP 735).
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during the early iterations of the matrix-free implementa-
tion suggest that a hybrid method, were the implicit integral
coupling is included only after some initial iterations, may
be a good compromise between robustness and efficiency.

For the first problem a constant collision frequency was
used in Eq. (3). Next we will increase the nonlinearity and
integral coupling by making the collision frequency a local
function of T and n (ncol 5 K1 n/T 3/2 , where K1 is a con-
stant). Figure 18 shows both the matrix free and the lagged
integral convergence for the x dependent ncol in terms of
CPU time. Again we see that the matrix free solution
requires significantly less time to obtain the same steady
state solution. It should be noted that the collision fre-
quency is lower for the x dependent ncol . This lower colli-
sion frequency reduced the importance of the integral cou-
pling which resulted in an easier problem to solve. To get
a more accurate collision operator, and a more correct
representation of time scales, we also plan to include a

FIG. 11. Mesh sequenced pressure. dependence on v in ncol in the future (i.e., ncol p 1/v3).
Finally, we demonstrate performance sensitivity to pre-

conditioning, pseudo-transient implementation, and Kry-
lov convergence tolerance, c. Figure 19 shows the effectimportance of keeping the integral quantities implicit for

convergence on the 25 3 50 grid. In the matrix-free option of the level of ILU fill [35] on the average number of
Krylov iterations per Newton iteration. The number ofall integral quantities are implicit and it takes only 33

iterations to converge compared to 1975 when the integral nonzero diagonals required is 5, 13, and 45 for ILU(0),
ILU(3), and ILU(6) respectively. The simulation is a re-quantities are evaluated at the old iteration value. Al-

though it costs more in terms of CPU time per iteration, start from the base problem, see Table I, with ncol in Eq.
(3) perturbed from 2.5 3 105 to 2.4 3 105. This is the sameone can clearly see from Fig. 16 that the matrix free option

is more computationally efficient by an order of magnitude. problem used to generate Figs. 20 through Fig. 22. The
plot clearly shows how the number of linear iterationsIn both cases the initial guess was Maxwellian with a flat

temperature and density profile. The severe oscillations increases when ILU(0) is used as a preconditioner as a

FIG. 12. Advanced discretization mesh sequenced pressure.
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FIG. 13. Advanced discretization update size vs Newton iteration.

function of problem size. The GMRES algorithm has a lem, 100 3 200. In the 100 3 200 ILU(0) problem, this
limit is attained in two of the four Newton iterations, butmaximum iteration count built into the solution. When

GMRES meets this limit, the last iteration is used as an the problem still converges. Figure 19 also demonstrates
that higher levels of ILU fill-in, although requiring moreinitial guess and the algorithm is restarted. For this run

the maximum iteration limit for GMRES is set at 480. This memory and CPU time, scale better with the problem size
than ILU(0). Figure 20 shows the effect of level of ILUmaximum iteration limit is set high to allow the weakest

preconditioner, ILU(0), to converge on the largest prob- fill-in on the run time (note that the CPU time is on a log

FIG. 14. Matrix free and lagged integral vs collision frequency CPU time (HP 735).
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FIG. 15. Matrix free and lagged integral vs collision frequency Newton iterations.

scale). Here we can see that the most powerful precondi- since this is a pseudo transient and not a ‘‘real’’ transient it
does not take 100 times as many steps to reach steady statetioner ILU(6) is also the most effective for the larger grids.

The effect of time step size, Dt from Eq. (39), on the for Dt 5 1.0 3 1025 as Dt 5 1.0 3 1023 (the actual numbers
are 7 and 152 or a ratio of about 22).Krylov iteration and the run time is presented in Fig. 21

for a 50 3 100 grid. Here one can see that as the time step The effect of the Krylov convergence tolerance, c from
Eq. (38), on the number of Krylov iterations is presentedsize increases the CPU time decreases, even though the

number of iterations per Newton step increases. Recall that in Fig. 22 on a 50 3 100 grid. Results are presented for two

FIG. 16. Matrix free vs lagged integral CPU time (HP 735).
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FIG. 17. Matrix free vs lagged integral Newton iterations.

different Krylov solvers, GMRES(40) and GMRES(120), the GMRES algorithm. With the maximum Krylov dimen-
sion set to 120 there are no restarts of the GMRES algo-where the maximum dimension of the Krylov space are

40 and 120, respectively. Since the GMRES algorithm’s rithm. When the maximum is set to 40 the algorithm has
to restart often. When the GMRES algorithm is restartedmemory usage and work increase with the number of itera-

tions, an upper bound is set (i.e., 40 or 120). If the number the convergence rate is slowed and sometimes stalls [32,
33]. Thus, there must be a trade-off between accuracy ofof iterations exceeds the preset limit the algorithm is re-

started with an initial guess constructed from the existing the linear solve, preconditioning, and memory require-
ments for the GMRES algorithm.Krylov vectors [31]. Here we show the effect of restarting

FIG. 18. Matrix free vs lagged integral CPU time (HP 735) for variable collision frequencies.
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FIG. 19. Average Krylov iteration vs level of ILU fill-in.
FIG. 21. Average Krylov iteration and run time vs time steps size.

6. SUMMARY AND CONCLUSIONS

pared with lagging them at old time values. Because thisWe have demonstrated that the matrix-free Newton–
method is fully implicit it can handle multiple time scalesKrylov method is a viable option for fully implicitly solving
effectively, as was demonstrated by solving the steady-the Vlasov equation with a simplified Fokker–Planck colli-
state equation directly. Therefore, there may be problemssion operator. The matrix-free option, which eliminates
that can be solved using this technique, such as coupledthe need for forming the full Jacobian matrix, drastically
ion–electron problems, which are very difficult to solvereduces the storage requirements of a simulation. For ex-
using other numerical integration methods. This methodample, for a sample problem of 100 velocity cells and 50
does not have any assumptions which preclude moving tospatial cells, we reduce the number of nonzero elements
higher dimensions although this work has not yet beenthat need to be stored from 7.549 3 105 for the complete
initiated. We have demonstrated that the method worksJacobian, to less than 2.5 3 104 for the preconditioner. We
with monotone higher-order differencing of the convectivehave also demonstrated that including the integral terms
operators (flux-limited QUICK). This method has alsoimplicitly significantly accelerates convergence as com-
been applied to coupled ion–electron kinetic solutions with

FIG. 22. Total Krylov iteration vs Krylov tolerance, c, for different
maximum Krylov space dimensions.FIG. 20. Run time vs level of ILU fill in for different grids.
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